{ "id": "math/0407530", "version": "v2", "published": "2004-07-30T12:28:01.000Z", "updated": "2004-11-29T15:13:47.000Z", "title": "Extremality for the Vafa-Witten bound on the sphere", "authors": [ "Marc Herzlich" ], "comment": "to appear in G.A.F.A", "categories": [ "math.DG" ], "abstract": "We prove that the round metric on the sphere has the largest first eigenvalue of the Dirac operator among all metrics that are larger than it. As a corollary, this gives an alternative proof of an extremality result for scalar curvature due to M. Llarull.", "revisions": [ { "version": "v2", "updated": "2004-11-29T15:13:47.000Z" } ], "analyses": { "subjects": [ "53C27", "58J50", "58J60" ], "keywords": [ "vafa-witten bound", "largest first eigenvalue", "scalar curvature", "round metric", "dirac operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......7530H" } } }