{ "id": "math/0407522", "version": "v1", "published": "2004-07-30T04:05:36.000Z", "updated": "2004-07-30T04:05:36.000Z", "title": "A duality between $q$-multiplicities in tensor products and $q$-multiplicities of weights for the root systems $B,C$ or $D$", "authors": [ "Cedric Lecouvey" ], "categories": [ "math.RT" ], "abstract": "Starting from Jacobi-Trudi's type determinental expressions for the Schur functions corresponding to types $B,C$ and $D,$ we define a natural $q$-analogue of the multiplicity $[V(\\lambda):M(\\mu)]$ when $M(\\mu)$ is a tensor product of row or column shaped modules defined by $\\mu$. We prove that these $q$-multiplicities are equal to certain Kostka-Foulkes polynomials related to the root systems $C$ or $D$. Finally we derive formulas expressing the associated multiplicities in terms of Kostka numbers.", "revisions": [ { "version": "v1", "updated": "2004-07-30T04:05:36.000Z" } ], "analyses": { "keywords": [ "multiplicity", "root systems", "tensor product", "jacobi-trudis type determinental expressions", "schur functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......7522L" } } }