{ "id": "math/0407368", "version": "v2", "published": "2004-07-22T03:27:47.000Z", "updated": "2010-08-11T07:37:21.000Z", "title": "The Boltzmann-Sinai Ergodic Hypothesis in Two Dimensions (Without Exceptional Models)", "authors": [ "Nandor Simanyi" ], "comment": "Paper withdrawn due to a substantial error", "categories": [ "math.DS", "math-ph", "math.MP" ], "abstract": "We consider the system of $N$ ($\\ge2$) elastically colliding hard balls of masses $m_1,...,m_N$ and radius $r$ in the flat unit torus $\\Bbb T^\\nu$, $\\nu\\ge2$. In the case $\\nu=2$ we prove (the full hyperbolicity and) the ergodicity of such systems for every selection $(m_1,...,m_N;r)$ of the external geometric parameters, without exceptional values. In higher dimensions, for hard ball systems in $\\Bbb T^\\nu$ ($\\nu\\ge3$), we prove that every such system (is fully hyperbolic and) has open ergodic components.", "revisions": [ { "version": "v2", "updated": "2010-08-11T07:37:21.000Z" } ], "analyses": { "subjects": [ "37D50", "34D05" ], "keywords": [ "boltzmann-sinai ergodic hypothesis", "exceptional models", "external geometric parameters", "flat unit torus", "hard ball systems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }