{ "id": "math/0407292", "version": "v1", "published": "2004-07-16T11:54:47.000Z", "updated": "2004-07-16T11:54:47.000Z", "title": "Lower bound for the size of maximal nontraceable graphs", "authors": [ "Marietjie Frick", "Joy Singleton" ], "comment": "10 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "Let g(n) denote the minimum number of edges of a maximal nontraceable graph of order n. Dudek, Katona and Wojda (2003) showed that g(n)\\geq\\ceil{(3n-2)/2}-2 for n\\geq 20 and g(n)\\leq\\ceil{(3n-2)/2} for n\\geq 54 as well as for n\\in I={22,23,30,31,38,39, 40,41,42,43,46,47,48,49,50,51}. We show that g(n)=\\ceil{(3n-2)/2} for n\\geq 54 as well as for n\\in I\\cup{12,13} and we determine g(n) for n\\leq 9.", "revisions": [ { "version": "v1", "updated": "2004-07-16T11:54:47.000Z" } ], "analyses": { "subjects": [ "05C38" ], "keywords": [ "maximal nontraceable graph", "lower bound", "minimum number" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......7292F" } } }