{ "id": "math/0407260", "version": "v1", "published": "2004-07-15T00:47:52.000Z", "updated": "2004-07-15T00:47:52.000Z", "title": "On the shape of the ground state eigenfunction for stable processes", "authors": [ "Rodrigo Banuelos", "Tadeusz Kulczycki", "Pedro J. Mendez-Hernandez" ], "categories": [ "math.PR" ], "abstract": "We prove that the ground state eigenfunction for symmetric stable processes of order $\\alpha\\in (0, 2)$ killed upon leaving the interval $(-1, 1)$ is concave on $(-{1/2}, {1/2})$. We call this property \"mid--concavity.\" A similar statement holds for rectangles in $\\R^d$, $d>1$. These result follow from similar results for finite dimensional distributions of Brownian motion and subordination.", "revisions": [ { "version": "v1", "updated": "2004-07-15T00:47:52.000Z" } ], "analyses": { "keywords": [ "ground state eigenfunction", "finite dimensional distributions", "similar statement holds", "similar results", "brownian motion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......7260B" } } }