{ "id": "math/0407121", "version": "v2", "published": "2004-07-08T08:32:22.000Z", "updated": "2004-07-15T13:05:06.000Z", "title": "Sphere Theorem for Manifolds with Positive Curvature", "authors": [ "Bazanfare Mahaman" ], "categories": [ "math.DG" ], "abstract": "In this paper, we prove that, for any integer $n\\ge 2,$ there exists an $\\epsilon_{n} \\ge 0$ so that if $M$ is an n-dimensional complete manifold with sectional curvature $ K_{M}\\ge 1$ and if $M$ has conjugate radius bigger than $\\frac{\\pi}{2} $ and contains a geodesic loop of length $2(\\pi -\\epsilon_{n}),$ then $M$ is diffeomorphic to the Euclidian unit sphere $S^{n}.$", "revisions": [ { "version": "v2", "updated": "2004-07-15T13:05:06.000Z" } ], "analyses": { "subjects": [ "53C20", "53C21" ], "keywords": [ "sphere theorem", "positive curvature", "euclidian unit sphere", "n-dimensional complete manifold", "conjugate radius bigger" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......7121M" } } }