{ "id": "math/0407100", "version": "v6", "published": "2004-07-07T11:26:38.000Z", "updated": "2005-04-10T06:30:01.000Z", "title": "Nonexistence of a crepant resolution of some moduli spaces of sheaves on a K3 surface", "authors": [ "Jaeyoo Choy", "Young-Hoon Kiem" ], "comment": "18 pages", "categories": [ "math.AG" ], "abstract": "Let $M_c=M(2,0,c)$ be the moduli space of O(1)-semistable rank 2 torsion-free sheaves with Chern classes $c_1=0$ and $c_2=c$ on a K3 surface $X$ where O(1) is a generic ample line bundle on $X$. When $c=2n\\geq4$ is even, $M_c$ is a singular projective variety equipped with a symplectic structure on the smooth locus. In this paper, we show that there is no crepant resolution of $M_{2n}$ for $n\\geq 3$. This implies that there is no symplectic desingularization.", "revisions": [ { "version": "v6", "updated": "2005-04-10T06:30:01.000Z" } ], "analyses": { "subjects": [ "53D30", "14J60" ], "keywords": [ "moduli space", "k3 surface", "crepant resolution", "nonexistence", "generic ample line bundle" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......7100C" } } }