{ "id": "math/0407016", "version": "v1", "published": "2004-07-01T19:02:58.000Z", "updated": "2004-07-01T19:02:58.000Z", "title": "Limit law of the standard right factor of a random Lyndon word", "authors": [ "Regine Marchand", "Elahe Zohoorian Azad" ], "categories": [ "math.PR" ], "abstract": "Consider the set of finite words on a totally ordered alphabet with $q$ letters. We prove that the distribution of the length of the standard right factor of a random Lyndon word with length $n$, divided by $n$, converges to: $$\\mu(dx)=\\frac1q \\delta_{1}(dx) + \\frac{q-1}q \\mathbf{1}_{[0,1)}(x)dx,$$ when $n$ goes to infinity. The convergence of all moments follows. This paper completes thus the results of \\cite{Bassino}, giving the asymptotics of the mean length of the standard right factor of a random Lyndon word with length $n$ in the case of a two letters alphabet.", "revisions": [ { "version": "v1", "updated": "2004-07-01T19:02:58.000Z" } ], "analyses": { "keywords": [ "standard right factor", "random lyndon word", "limit law", "paper completes", "finite words" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......7016M" } } }