{ "id": "math/0406621", "version": "v2", "published": "2004-06-30T15:07:16.000Z", "updated": "2004-08-16T21:18:46.000Z", "title": "On the Degree Growth of Birational Mappings in Higher Dimension", "authors": [ "Eric Bedford", "Kyounghee Kim" ], "categories": [ "math.DS", "math.CV" ], "abstract": "Let $f$ be a birational map of ${\\bf C}^d$, and consider the degree complexity, or asymptotic degree growth rate $\\delta(f)=\\lim_{n\\to\\infty}({\\rm deg}(f^n))^{1/n}$. We introduce a family of elementary maps, which have the form $f=L\\circ J$, where $L$ is (invertible) linear, and $J(x_1,...,x_d)=(x_1^{-1},...,x_d^{-1})$. We develop a method of regularization and show how it can be used to compute $\\delta$ for an elementary map.", "revisions": [ { "version": "v2", "updated": "2004-08-16T21:18:46.000Z" } ], "analyses": { "subjects": [ "37F99", "32H50", "14E07" ], "keywords": [ "birational mappings", "higher dimension", "elementary map", "asymptotic degree growth rate", "degree complexity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......6621B" } } }