{ "id": "math/0406605", "version": "v2", "published": "2004-06-29T15:09:14.000Z", "updated": "2004-10-23T20:56:35.000Z", "title": "Compactification of the moduli space of rho-vortices", "authors": [ "P. Angulo" ], "comment": "12 pages, no figures", "categories": [ "math.DG" ], "abstract": "We consider the set of solutions to the rho-vortex equations over a Kahler surface and prove a Uhlenbeck compactness result, namely that a sequence of solutions with the same energy converge to the sum of a solution of smaller energy and deltas of Dirac.", "revisions": [ { "version": "v2", "updated": "2004-10-23T20:56:35.000Z" } ], "analyses": { "subjects": [ "53C07", "70S15" ], "keywords": [ "moduli space", "compactification", "rho-vortices", "uhlenbeck compactness result", "rho-vortex equations" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......6605A" } } }