{ "id": "math/0406569", "version": "v1", "published": "2004-06-28T10:50:28.000Z", "updated": "2004-06-28T10:50:28.000Z", "title": "Limits of functions and elliptic operators", "authors": [ "Siddhartha Gadgil" ], "comment": "6 pages, no figures, no tables", "journal": "Proc. Indian Acad. Sci. (Math. Sci.), Vol. 114, No. 2, May 2004, pp. 153-158", "categories": [ "math.DG" ], "abstract": "We show that a subspace $S$ of the space of real analytical functions on a manifold that satisfies certain regularity properties is contained in the set of solutions of a linear elliptic differential equation. The regularity properties are that $S$ is closed in $L^2(M)$ and that if a sequence of functions $f_n$ in $S$ converges in $L^2(M)$, then so do the partial derivatives of the functions $f_n$.", "revisions": [ { "version": "v1", "updated": "2004-06-28T10:50:28.000Z" } ], "analyses": { "subjects": [ "58J05", "32C05" ], "keywords": [ "elliptic operators", "linear elliptic differential equation", "regularity properties", "real analytical functions", "partial derivatives" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......6569G" } } }