{ "id": "math/0406364", "version": "v1", "published": "2004-06-18T17:55:37.000Z", "updated": "2004-06-18T17:55:37.000Z", "title": "A Thinning Analogue of de Finetti's Theorem", "authors": [ "Shannon Starr" ], "comment": "30 pages, 1 figure", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We consider a notion of uniform thinning for a finite sequence of random variables $(X_1,...,X_n)$ obtained by removing one random variable, uniformly at random. If a triangular array of random variables $(X_{n,k} : n \\in \\mathbb{N}_+, 1 \\le k \\le n)$ satisfies that the law of $(X_{n,1},...,X_{n,n})$ is obtained by uniformly thinning $(X_{n+1,1},...,X_{n+1,n+1})$, then we call the array thinning-invariant. We give a representation for the Choquet simplex of all thinning-invariant triangular arrays of random variables, when all random variables take values in a compact metric space (with Borel measurable distributions). We give two applications: to long-ranged, asymmetric classical spin chains, and long-ranged, asymmetric simple exclusion processes.", "revisions": [ { "version": "v1", "updated": "2004-06-18T17:55:37.000Z" } ], "analyses": { "subjects": [ "60G09", "82B20", "60J10" ], "keywords": [ "finettis theorem", "random variable", "thinning analogue", "asymmetric simple exclusion processes", "asymmetric classical spin chains" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......6364S" } } }