{ "id": "math/0406360", "version": "v1", "published": "2004-06-18T04:35:11.000Z", "updated": "2004-06-18T04:35:11.000Z", "title": "Convergence of multiple ergodic averages for some commuting transformations", "authors": [ "Nikos Frantzikinakis", "Bryna Kra" ], "comment": "12 pages", "categories": [ "math.DS" ], "abstract": "We prove the $L^{2}$ convergence for the linear multiple ergodic averages of commuting transformations $T_{1}, ..., T_{l}$, assuming that each map $T_i$ and each pair $T_iT_j^{-1}$ is ergodic for $i\\neq j$. The limiting behavior of such averages is controlled by a particular factor, which is an inverse limit of nilsystems. As a corollary we show that the limiting behavior of linear multiple ergodic averages is the same for commuting transformations.", "revisions": [ { "version": "v1", "updated": "2004-06-18T04:35:11.000Z" } ], "analyses": { "subjects": [ "37A30" ], "keywords": [ "commuting transformations", "linear multiple ergodic averages", "convergence", "limiting behavior", "inverse limit" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......6360F" } } }