{ "id": "math/0406299", "version": "v1", "published": "2004-06-15T15:49:30.000Z", "updated": "2004-06-15T15:49:30.000Z", "title": "Conformal holonomy of bi-invariant metrics", "authors": [ "Felipe Leitner" ], "comment": "14 pages", "categories": [ "math.DG" ], "abstract": "We discuss in this paper the conformal geometry of bi-invariant metrics on compact semisimple Lie groups. For this purpose we develop a conformal Cartan calculus adapted to this problem. In particular, we derive an explicit formula for the holonomy algebra of the normal conformal Cartan connection of a bi-invariant metric. As an example, we apply this calculus to the group $\\SO(4)$. Its conformal holonomy group is calculated to be $\\SO(7)$.", "revisions": [ { "version": "v1", "updated": "2004-06-15T15:49:30.000Z" } ], "analyses": { "subjects": [ "53A30", "53C29" ], "keywords": [ "bi-invariant metric", "compact semisimple lie groups", "normal conformal cartan connection", "conformal holonomy group", "conformal geometry" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......6299L" } } }