{ "id": "math/0406239", "version": "v2", "published": "2004-06-11T12:12:45.000Z", "updated": "2004-06-14T18:29:02.000Z", "title": "On the uniqueness of ${\\bf C}^*$-actions on affine surfaces", "authors": [ "Hubert Flenner", "Mikhail Zaidenberg" ], "comment": "11/06/2004 2 version 14/06/2004", "categories": [ "math.AG" ], "abstract": "We prove that a normal affine surface $V$ over $\\bf C$ admits an effective action of a maximal torus ${\\bf T}={\\bf C}^{*n}$ ($n\\le 2$) such that any other effective ${\\bf C}^*$-action is conjugate to a subtorus of $\\bf T$ in Aut $(V)$, in the following particular cases: (a) the Makar-Limanov invariant ML$(V)$ is nontrivial, (b) $V$ is a toric surface, (c) $V={\\bf P}^1\\times {\\bf P}^1\\backslash \\Delta$, where $\\Delta$ is the diagonal, and (d) $V={\\bf P}^2\\backslash Q$, where $Q$ is a nonsingular quadric. In case (a) this generalizes a result of Bertin for smooth surfaces, whereas (b) was previously known for the case of the affine plane (Gutwirth) and (d) is a result of Danilov-Gizatullin and Doebeli.", "revisions": [ { "version": "v2", "updated": "2004-06-14T18:29:02.000Z" } ], "analyses": { "subjects": [ "14R05", "14R20", "14J50" ], "keywords": [ "uniqueness", "normal affine surface", "makar-limanov invariant ml", "affine plane", "maximal torus" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......6239F" } } }