{ "id": "math/0406149", "version": "v1", "published": "2004-06-08T15:32:07.000Z", "updated": "2004-06-08T15:32:07.000Z", "title": "The Alexander module of links at infinity", "authors": [ "David Cimasoni" ], "comment": "14 pages, 2 figures", "journal": "Int. Math. Res. Not. 2004, no. 20, 1023--1036", "categories": [ "math.GT" ], "abstract": "Walter Neumann showed that the topology of a ``regular'' algebraic curve V in C^2 is determined up to proper isotopy by some link in S^3 called the link at infinity of V. In this note, we compute the Alexander module over C[t^{\\pm 1}] of any such link at infinity.", "revisions": [ { "version": "v1", "updated": "2004-06-08T15:32:07.000Z" } ], "analyses": { "subjects": [ "32S55", "57M27" ], "keywords": [ "alexander module", "algebraic curve", "proper isotopy", "walter neumann" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......6149C" } } }