{ "id": "math/0406093", "version": "v5", "published": "2004-06-05T18:59:40.000Z", "updated": "2006-09-05T20:02:07.000Z", "title": "The Beckman-Quarles theorem for continuous mappings from C^n to C^n", "authors": [ "Apoloniusz Tyszka" ], "comment": "10 pages, LaTeX2e, the version which appeared in Aequationes Mathematicae", "journal": "Aequationes Mathematicae 72 (2006), no. 1-2, pp. 78-88", "doi": "10.1007/s00010-005-2819-1", "categories": [ "math.MG" ], "abstract": "Let varphi_n:C^n times C^n->C, varphi_n((x_1,...,x_n),(y_1,...,y_n))=sum_{i=1}^n (x_i-y_i)^2. We say that f:C^n->C^n preserves distance d>=0, if for each X,Y in C^n varphi_n(X,Y)=d^2 implies varphi_n(f(X),f(Y))=d^2. We prove: if n>=2 and a continuous f:C^n->C^n preserves unit distance, then f has a form I circ (rho,...,rho), where I:C^n->C^n is an affine mapping with orthogonal linear part and rho:C->C is the identity or the complex conjugation. For n >=3 and bijective f the theorem follows from Theorem 2 in [8].", "revisions": [ { "version": "v5", "updated": "2006-09-05T20:02:07.000Z" } ], "analyses": { "subjects": [ "39B32", "51M05" ], "keywords": [ "beckman-quarles theorem", "continuous mappings", "orthogonal linear part", "preserves unit distance", "preserves distance" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......6093T" } } }