{ "id": "math/0405547", "version": "v1", "published": "2004-05-28T10:13:28.000Z", "updated": "2004-05-28T10:13:28.000Z", "title": "Euclidean tetrahedra and knot invariants", "authors": [ "I. G. Korepanov" ], "comment": "8 pages; a shorter version will be published at http://csc.ac.ru/LANG=en/news/index.html.en", "categories": [ "math.GT" ], "abstract": "We construct knot invariants on the basis of ascribing Euclidean geometric values to a triangulation of sphere S^3 where the knot lies. The main new feature of this construction compared to the author's earlier papers on manifold invariants is that now nonzero \"deficit angles\" (in the terminology of Regge calculus) can also be handled. Moreover, the knot goes exactly along those edges of triangulations that have nonzero deficit angles.", "revisions": [ { "version": "v1", "updated": "2004-05-28T10:13:28.000Z" } ], "analyses": { "keywords": [ "euclidean tetrahedra", "authors earlier papers", "construct knot invariants", "nonzero deficit angles", "ascribing euclidean geometric values" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......5547K" } } }