{ "id": "math/0405427", "version": "v2", "published": "2004-05-22T10:11:44.000Z", "updated": "2004-07-01T09:20:08.000Z", "title": "The Euler characteristic of local systems on the moduli of genus 3 hyperelliptic curves", "authors": [ "Gilberto Bini", "Gerard van der Geer" ], "comment": "12 pages, Latex; Table 5 corrected", "categories": [ "math.AG" ], "abstract": "For a partition $lambda=\\{lambda_1 \\geq \\lambda_2 \\geq \\lambda_3 \\}$ of non-negative integers, we calculate the Euler characteristic of the local system $V_{\\lambda}$ on the moduli space of genus 3 hyperelliptic curves using a suitable stratification. For some $\\lambda$ of low degree, we make a guess for the motivic Euler characteristic of $V_{\\lambda}$ using counting of curves over finite fields.", "revisions": [ { "version": "v2", "updated": "2004-07-01T09:20:08.000Z" } ], "analyses": { "subjects": [ "14J15" ], "keywords": [ "hyperelliptic curves", "local system", "motivic euler characteristic", "finite fields", "moduli space" ], "note": { "typesetting": "LaTeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......5427B" } } }