{ "id": "math/0405212", "version": "v1", "published": "2004-05-12T18:47:06.000Z", "updated": "2004-05-12T18:47:06.000Z", "title": "Absolute extensors in extension theory", "authors": [ "Alex Karasev", "Vesko Valov" ], "categories": [ "math.GT", "math.GN" ], "abstract": "Let L be a countable and locally finite CW complex. Suppose that the class of all metrizable compacta of extension dimension not greater than L contains a universal element which is an absolute extensor in dimension L. Our main result shows that L is quasi-finite.", "revisions": [ { "version": "v1", "updated": "2004-05-12T18:47:06.000Z" } ], "analyses": { "keywords": [ "absolute extensor", "extension theory", "locally finite cw complex", "extension dimension", "universal element" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......5212K" } } }