{ "id": "math/0405161", "version": "v3", "published": "2004-05-10T02:36:08.000Z", "updated": "2006-11-20T10:58:26.000Z", "title": "Spectral gap for the zero range process with constant rate", "authors": [ "Ben Morris" ], "comment": "Published at http://dx.doi.org/10.1214/009117906000000304 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2006, Vol. 34, No. 5, 1645-1664", "doi": "10.1214/009117906000000304", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We solve an open problem concerning the relaxation time (inverse spectral gap) of the zero range process in $\\mathbf {Z}^d/L\\mathbf {Z}^d$ with constant rate, proving a tight upper bound of $O((\\rho +1)^2L^2)$, where $\\rho$ is the density of particles.", "revisions": [ { "version": "v3", "updated": "2006-11-20T10:58:26.000Z" } ], "analyses": { "subjects": [ "60K35", "82C22" ], "keywords": [ "zero range process", "constant rate", "inverse spectral gap", "tight upper bound", "relaxation time" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......5161M" } } }