{ "id": "math/0405152", "version": "v1", "published": "2004-05-09T09:36:15.000Z", "updated": "2004-05-09T09:36:15.000Z", "title": "Moderate deviation principle for exponentially ergodic Markov chain", "authors": [ "B. Delyon", "A. Juditsky", "R. Liptser" ], "comment": "16 pg", "categories": [ "math.PR" ], "abstract": "For ${1/2}<\\alpha<1$, we propose the MDP analysis for family $$ S^\\alpha_n=\\frac{1}{n^\\alpha}\\sum_{i=1}^nH(X_{i-1}), n\\ge 1, $$ where $(X_n)_{n\\ge 0}$ be a homogeneous ergodic Markov chain, $X_n\\in \\mathbb{R}^d$, when the spectrum of operator $P_x$ is continuous. The vector-valued function $H$ is not assumed to be bounded but the Lipschitz continuity of $H$ is required. The main helpful tools in our approach are Poisson equation and Stochastic Exponential; the first enables to replace the original family by $\\frac{1}{n^\\alpha}M_n$ with a martingale $M_n$ while the second to avoid the direct Laplace transform analysis.", "revisions": [ { "version": "v1", "updated": "2004-05-09T09:36:15.000Z" } ], "analyses": { "subjects": [ "60J27", "60F10" ], "keywords": [ "exponentially ergodic markov chain", "moderate deviation principle", "direct laplace transform analysis", "homogeneous ergodic markov chain", "mdp analysis" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......5152D" } } }