{ "id": "math/0405144", "version": "v1", "published": "2004-05-08T04:20:38.000Z", "updated": "2004-05-08T04:20:38.000Z", "title": "The space requirement of m-ary search trees: distributional asymptotics for m >= 27", "authors": [ "James Allen Fill", "Nevin Kapur" ], "comment": "10 pages, 1 figure", "categories": [ "math.PR" ], "abstract": "We study the space requirement of $m$-ary search trees under the random permutation model when $m \\geq 27$ is fixed. Chauvin and Pouyanne have shown recently that $X_n$, the space requirement of an $m$-ary search tree on $n$ keys, equals $\\mu (n+1) + 2\\Re{[\\Lambda n^{\\lambda_2}]} + \\epsilon_n n^{\\Re{\\lambda_2}}$, where $\\mu$ and $\\lambda_2$ are certain constants, $\\Lambda$ is a complex-valued random variable, and $\\epsilon_n \\to 0$ a.s. and in $L^2$ as $n \\to \\infty$. Using the contraction method, we identify the distribution of $\\Lambda$.", "revisions": [ { "version": "v1", "updated": "2004-05-08T04:20:38.000Z" } ], "analyses": { "subjects": [ "60C05", "60F05" ], "keywords": [ "m-ary search trees", "space requirement", "distributional asymptotics", "random permutation model", "contraction method" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......5144F" } } }