{ "id": "math/0405079", "version": "v1", "published": "2004-05-05T15:05:22.000Z", "updated": "2004-05-05T15:05:22.000Z", "title": "Units of ring spectra and their traces in algebraic K-theory", "authors": [ "Christian Schlichtkrull" ], "comment": "Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol8/paper16.abs.html", "journal": "Geom. Topol. 8(2004) 645-673", "categories": [ "math.AT" ], "abstract": "Let GL_1(R) be the units of a commutative ring spectrum R. In this paper we identify the composition BGL_1(R)->K(R)->THH(R)->\\Omega^{\\infty}(R), where K(R) is the algebraic K-theory and THH(R) the topological Hochschild homology of R. As a corollary we show that classes in \\pi_{i-1}(R) not annihilated by the stable Hopf map give rise to non-trivial classes in K_i(R) for i\\geq 3.", "revisions": [ { "version": "v1", "updated": "2004-05-05T15:05:22.000Z" } ], "analyses": { "subjects": [ "19D55", "55P43", "19D10", "55P48" ], "keywords": [ "algebraic k-theory", "stable hopf map", "non-trivial classes", "topological hochschild homology", "composition" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }