{ "id": "math/0404475", "version": "v2", "published": "2004-04-27T01:36:17.000Z", "updated": "2004-06-02T21:03:08.000Z", "title": "The Kauffman bracket and the Bollobas-Riordan polynomial of ribbon graphs", "authors": [ "Sergei Chmutov", "Igor Pak" ], "comment": "Some references added", "categories": [ "math.GT", "math.CO" ], "abstract": "For a ribbon graph $G$ we consider an alternating link $L_G$ in the 3-manifold $G\\times I$ represented as the product of the oriented surface $G$ and the unit interval $I$. We show that the Kauffman bracket $[L_G]$ is an evaluation of the recently introduced Bollobas-Riordan polynomial $R_G$. This results generalizes the celebrated relation between Kauffman bracket and Tutte polynomial of planar graphs.", "revisions": [ { "version": "v2", "updated": "2004-06-02T21:03:08.000Z" } ], "analyses": { "subjects": [ "57M15", "57M25", "05C10", "05C15" ], "keywords": [ "kauffman bracket", "bollobas-riordan polynomial", "ribbon graph", "tutte polynomial", "results generalizes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......4475C" } } }