{ "id": "math/0404459", "version": "v2", "published": "2004-04-26T13:30:21.000Z", "updated": "2009-03-23T11:12:22.000Z", "title": "The Coxeter quotient of the fundamental group of a Galois cover of T \\times T", "authors": [ "Amram Meirav", "Mina Teicher", "Uzi Vishne" ], "comment": "25 pp", "categories": [ "math.AG", "math.GR" ], "abstract": "Let $X$ be the surface $\\T\\times\\T$ where $\\T$ is the complex torus. This paper is the third in a series, studying the fundamental group of the Galois cover of $X$ \\wrt a generic projection onto $\\C\\P^2$. Van Kampen Theorem gives a presentation of the fundamental group of the complement of the branch curve, with 54 generators and more than 2000 relations. Here we introduce a certain natural quotient (obtained by identifying pairs of generators), prove it is a quotient of a Coxeter group related to the degeneration of $X$, and show that this quotient is virtually nilpotent.", "revisions": [ { "version": "v2", "updated": "2009-03-23T11:12:22.000Z" } ], "analyses": { "subjects": [ "14J29" ], "keywords": [ "fundamental group", "galois cover", "coxeter quotient", "van kampen theorem", "natural quotient" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......4459M" } } }