{ "id": "math/0404453", "version": "v1", "published": "2004-04-26T05:30:24.000Z", "updated": "2004-04-26T05:30:24.000Z", "title": "Symplectic desingularization of moduli space of sheaves on a K3 surface", "authors": [ "Young-Hoon Kiem" ], "categories": [ "math.AG" ], "abstract": "Let $X$ be a projective K3 surface with generic polarization $\\cO_X(1)$ and let $M_c=M(2,0,c)$ be the moduli space of semistable torsion-free sheaves on $X$ of rank 2, with Chern classes $c_1=0$ and $c_2=c$. When $c=2n\\ge 4$ is even, $M_c$ is a singular projective variety. We show that there is no symplectic desingularization of $M_{2n}$ if $\\frac{n a_n}{2n-3}$ is not an integer where $a_n$ is the Euler number of the Hilbert scheme $X^{[n]}$ of $n$ points in $X$.", "revisions": [ { "version": "v1", "updated": "2004-04-26T05:30:24.000Z" } ], "analyses": { "subjects": [ "14H60", "14F25", "14F42" ], "keywords": [ "moduli space", "symplectic desingularization", "generic polarization", "semistable torsion-free sheaves", "projective k3 surface" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......4453K" } } }