{ "id": "math/0404385", "version": "v3", "published": "2004-04-21T14:24:55.000Z", "updated": "2008-07-14T15:58:25.000Z", "title": "On sums of binomial coefficients and their applications", "authors": [ "Zhi-Wei Sun" ], "journal": "Discrete Math. 308(2008), 4231-4245", "categories": [ "math.NT", "math.CO" ], "abstract": "In this paper we study recurrences concerning the combinatorial sum $[n,r]_m=\\sum_{k\\equiv r (mod m)}\\binom {n}{k}$ and the alternate sum $\\sum_{k\\equiv r (mod m)}(-1)^{(k-r)/m}\\binom{n}{k}$, where m>0, $n\\ge 0$ and r are integers. For example, we show that if $n\\ge m-1$ then $$\\sum_{i=0}^{\\lfloor(m-1)/2\\rfloor}(-1)^i\\binom{m-1-i}i [n-2i,r-i]_m=2^{n-m+1}.$$ We also apply such results to investigate Bernoulli and Euler polynomials. Our approach depends heavily on an identity established by the author [Integers 2(2002)].", "revisions": [ { "version": "v3", "updated": "2008-07-14T15:58:25.000Z" } ], "analyses": { "subjects": [ "11B65", "05A19", "11B37", "11B68" ], "keywords": [ "binomial coefficients", "applications", "euler polynomials", "alternate sum", "combinatorial sum" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......4385S" } } }