{ "id": "math/0404325", "version": "v1", "published": "2004-04-19T02:18:47.000Z", "updated": "2004-04-19T02:18:47.000Z", "title": "Asymptotic Improvement of the Gilbert-Varshamov Bound on the Size of Binary Codes", "authors": [ "Tao Jiang", "Alexander Vardy" ], "comment": "10 pages, 3 figures; to appear in the IEEE Transactions on Information Theory, submitted August 12, 2003, revised March 28, 2004", "journal": "IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 50, No. 8, pp. 1655-1664, August 2004 (http://www.ieeexplore.ieee.org/iel5/18/29198/01317112.pdf)", "doi": "10.1109/TIT.2004.831751", "categories": [ "math.CO", "cs.IT", "math.AC", "math.IT" ], "abstract": "Given positive integers $n$ and $d$, let $A_2(n,d)$ denote the maximum size of a binary code of length $n$ and minimum distance $d$. The well-known Gilbert-Varshamov bound asserts that $A_2(n,d) \\geq 2^n/V(n,d-1)$, where $V(n,d) = \\sum_{i=0}^{d} {n \\choose i}$ is the volume of a Hamming sphere of radius $d$. We show that, in fact, there exists a positive constant $c$ such that $$ A_2(n,d) \\geq c \\frac{2^n}{V(n,d-1)} \\log_2 V(n,d-1) $$ whenever $d/n \\le 0.499$. The result follows by recasting the Gilbert- Varshamov bound into a graph-theoretic framework and using the fact that the corresponding graph is locally sparse. Generalizations and extensions of this result are briefly discussed.", "revisions": [ { "version": "v1", "updated": "2004-04-19T02:18:47.000Z" } ], "analyses": { "subjects": [ "05C90", "94B65", "05A16", "05C69" ], "keywords": [ "binary code", "asymptotic improvement", "well-known gilbert-varshamov bound asserts", "minimum distance", "graph-theoretic framework" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......4325J" } } }