{ "id": "math/0404321", "version": "v6", "published": "2004-04-19T19:16:00.000Z", "updated": "2004-11-10T15:25:37.000Z", "title": "The Beckman-Quarles theorem for mappings from C^2 to C^2", "authors": [ "Apoloniusz Tyszka" ], "comment": "9 pages, LaTeX2e, a new proof uses the connectivity of unit-distance graph on C^2", "journal": "Acta Math. Acad. Paedagog. Nyh\\'azi. (N.S.) 21 (2005), no. 1, 63-69 (electronic), www.emis.de/journals", "categories": [ "math.MG" ], "abstract": "Let phi: C^2 times C^2 -> C, phi((x_1,x_2),(y_1,y_2))=(x_1-y_1)^2+(x_2-y_2)^2. We say that f:C^2->C^2 preserves unit distance, if for each X,Y in C^2 phi(X,Y)=1 implies phi(f(X),f(Y))=1. We prove that each unit-distance preserving mapping f:C^2->C^2 has a form J circ (gamma,gamma), where gamma:C->C is a field homomorphism and J:C^2->C^2 is an affine mapping with orthogonal linear part. We also prove a more general result for any commutative field K for which {x \\in K: x^2+1=0} \\neq \\emptyset and char(K) \\not\\in {2,3,5}.", "revisions": [ { "version": "v6", "updated": "2004-11-10T15:25:37.000Z" } ], "analyses": { "subjects": [ "39B32", "51B20", "51M05" ], "keywords": [ "beckman-quarles theorem", "orthogonal linear part", "preserves unit distance", "general result", "field homomorphism" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......4321T" } } }