{ "id": "math/0404235", "version": "v1", "published": "2004-04-12T20:45:08.000Z", "updated": "2004-04-12T20:45:08.000Z", "title": "The fixed point property for a class of nonexpansive maps in L\\sp\\infty(Ω,Σ,μ)", "authors": [ "Cleon S. Barroso" ], "comment": "4 pages", "categories": [ "math.FA" ], "abstract": "For a finite and positive measure space $(\\Omega,\\Sigma,\\mu)$ and any weakly compact convex subset of $L\\sp\\infty(\\Omega,\\Sigma,mu)$, a fixed point theorem for a class of nonexpansive self-mappings is proved. An analogous result is obtained for the space $C(\\Omega)$. An illustrative example is given.", "revisions": [ { "version": "v1", "updated": "2004-04-12T20:45:08.000Z" } ], "analyses": { "subjects": [ "47H10" ], "keywords": [ "fixed point property", "nonexpansive maps", "weakly compact convex subset", "positive measure space", "fixed point theorem" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......4235B" } } }