{ "id": "math/0404213", "version": "v2", "published": "2004-04-10T20:21:23.000Z", "updated": "2004-04-15T10:45:37.000Z", "title": "A sharpening of Li's criterion for the Riemann Hypothesis", "authors": [ "André Voros" ], "comment": "1 Latex file, 5 pages, submitted to C.R. Acad. Sci. (Paris) S\\'er. I. V2: notation corrected in eq.(7); eq.(9) made more precise", "categories": [ "math.NT", "math.CV" ], "abstract": "Exact and asymptotic formulae are displayed for the coefficients $\\lambda_n$ used in Li's criterion for the Riemann Hypothesis. In particular, we argue that if (and only if) the Hypothesis is true, $\\lambda_n \\sim n(A \\log n +B)$ for $n \\to \\infty$ (with explicit $A>0$ and $B$). The approach also holds for more general zeta or $L$-functions.", "revisions": [ { "version": "v2", "updated": "2004-04-15T10:45:37.000Z" } ], "analyses": { "subjects": [ "11M26", "30B40", "41A60" ], "keywords": [ "lis criterion", "riemann hypothesis", "sharpening", "asymptotic formulae", "general zeta" ], "note": { "typesetting": "LaTeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......4213V" } } }