{ "id": "math/0404075", "version": "v1", "published": "2004-04-05T05:13:42.000Z", "updated": "2004-04-05T05:13:42.000Z", "title": "Algebraic entropy of elementary amenable groups", "authors": [ "D. V. Osin" ], "comment": "20 pages; to appear in Geom. Dedicata", "categories": [ "math.GR" ], "abstract": "We prove that any finitely generated elementary amenable group of zero (algebraic) entropy contains a nilpotent subgroup of finite index or, equivalently, any finitely generated elementary amenable group of exponential growth is of uniformly exponential growth. We also show that 0 is an accumulation point of the set of entropies of elementary amenable groups.", "revisions": [ { "version": "v1", "updated": "2004-04-05T05:13:42.000Z" } ], "analyses": { "subjects": [ "20F65", "20F69" ], "keywords": [ "algebraic entropy", "finitely generated elementary amenable group", "finite index", "nilpotent subgroup", "entropy contains" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......4075O" } } }