{ "id": "math/0403469", "version": "v1", "published": "2004-03-26T17:48:12.000Z", "updated": "2004-03-26T17:48:12.000Z", "title": "Boundary Value Problems for the $2^{nd}$-order Seiberg-Witten Equations", "authors": [ "C M Doria" ], "comment": "19 pages", "categories": [ "math.AP", "math-ph", "math.DG", "math.MP" ], "abstract": "It is shown that the non-homogeneous Dirichlet and Neuman problems for the $2^{nd}$-order Seiberg-Witten equation admit a regular solution once the $\\mathcal{H}$-condition (described in the article) is satisfied. The approach consist in applying the elliptic techniques to the variational setting of the Seiberg-Witten equation.", "revisions": [ { "version": "v1", "updated": "2004-03-26T17:48:12.000Z" } ], "analyses": { "subjects": [ "58J05", "58E50" ], "keywords": [ "boundary value problems", "order seiberg-witten equation admit", "neuman problems", "regular solution", "approach consist" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......3469D" } } }