{ "id": "math/0403321", "version": "v2", "published": "2004-03-19T14:42:48.000Z", "updated": "2004-04-27T13:18:22.000Z", "title": "Convex Hypersurfaces and $L^p$ Estimates for Schrödinger Equations", "authors": [ "Quan Zheng", "Xiaohua Yao", "Da Fan" ], "comment": "18 pages", "categories": [ "math.AP", "math.CA" ], "abstract": "This paper is concerned with Schr\\\"odinger equations whose principal operators are homogeneous elliptic. When the corresponding level hypersurface is convex, we show the $L^p$-$L^q$ estimate of solution operator in free case. This estimate, combining with the results of fractionally integrated groups, allows us to further obtain the $L^p$ estimate of solutions for the initial data belonging to a dense subset of $L^p$ in the case of integrable potentials.", "revisions": [ { "version": "v2", "updated": "2004-04-27T13:18:22.000Z" } ], "analyses": { "subjects": [ "35J10", "42B10" ], "keywords": [ "schrödinger equations", "convex hypersurfaces", "principal operators", "free case", "corresponding level hypersurface" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......3321Z" } } }