{ "id": "math/0403240", "version": "v1", "published": "2004-03-15T12:26:02.000Z", "updated": "2004-03-15T12:26:02.000Z", "title": "Coefficient systems and supersingular representations of $GL_2(F)$", "authors": [ "Vytautas Paskunas" ], "comment": "90 pages", "categories": [ "math.RT", "math.NT" ], "abstract": "Let $F$ be a non-Archimedean local field with the residual characteristic $p$. We construct a \"good\" number of smooth irreducible $\\bar{\\mathbf{F}}_p$-representations of $GL_2(F)$, which are supersingular in the sense of Barthel and Livn\\'e. If $F=\\mathbf{Q}_p$ then results of Breuil imply that our construction gives all the supersingular representations up to the twist by an unramified quasi-character. We conjecture this is true for arbitrary $F$.", "revisions": [ { "version": "v1", "updated": "2004-03-15T12:26:02.000Z" } ], "analyses": { "subjects": [ "22E50" ], "keywords": [ "supersingular representations", "coefficient systems", "non-archimedean local field", "residual characteristic", "construction" ], "note": { "typesetting": "TeX", "pages": 90, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......3240P" } } }