{ "id": "math/0403033", "version": "v2", "published": "2004-03-02T04:24:50.000Z", "updated": "2004-03-06T01:08:36.000Z", "title": "Vanishing of the top Chern classes of the moduli of vector bundles", "authors": [ "Young-Hoon Kiem", "Jun Li" ], "categories": [ "math.AG" ], "abstract": "Let $Y$ be a smooth projective curve of genus $g\\ge 2$ and let $M_{r,d}(Y)$ be the moduli space of stable vector bundles of rank $r$ and degree $d$ on $Y$. A classical conjecture of Newstead and Ramanan states that $ c_i(M_{2,1}(Y))=0$ for $i>2(g-1)$ i.e. the top $2g-1$ Chern classes vanish. The purpose of this paper is to generalize this vanishing result to the rank 3 case by generalizing Gieseker's degeneration method. More precisely, we prove that $c_i(M_{3,1}(Y))=0$ for $i>6g-5$. In other words, the top $3g-3$ Chern classes vanish. Notice that we also have $c_i(M_{3,2}(Y))=0$ for $i>6g-5$.", "revisions": [ { "version": "v2", "updated": "2004-03-06T01:08:36.000Z" } ], "analyses": { "subjects": [ "14H60", "14F25", "14F42" ], "keywords": [ "chern classes vanish", "generalizing giesekers degeneration method", "smooth projective curve", "stable vector bundles", "moduli space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......3033K" } } }