{ "id": "math/0402436", "version": "v2", "published": "2004-02-26T16:41:06.000Z", "updated": "2004-09-21T13:43:32.000Z", "title": "Alternating groups as monodromy groups in positive characteristic", "authors": [ "Irene I. Bouw", "Stefan Wewers" ], "comment": "15 pages, revised version", "categories": [ "math.AG" ], "abstract": "Let $X$ be a generic curve of genus $g$ defined over an algebraically closed field $k$ of characteristic $p\\geq 0$. We show that for $n$ sufficiently large there exists a tame rational map $f:X\\to \\PP^1_k$ with monodromy group $A_n$. This generalizes a result of Magaard--V\\\"olklein to positive characteristic.", "revisions": [ { "version": "v2", "updated": "2004-09-21T13:43:32.000Z" } ], "analyses": { "subjects": [ "14H30" ], "keywords": [ "monodromy group", "positive characteristic", "alternating groups", "tame rational map", "generic curve" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......2436B" } } }