{ "id": "math/0402328", "version": "v1", "published": "2004-02-20T06:00:41.000Z", "updated": "2004-02-20T06:00:41.000Z", "title": "Syzygies, regularity and toric varieties", "authors": [ "Milena Hering" ], "comment": "7 pages", "categories": [ "math.AG", "math.CO" ], "abstract": "Let A be an ample line bundle on a projective toric variety X of dimension n. We show that if l>=n-1+p, then A^l satisfies the property N_p. Applying similar methods, we obtain a combinatorial theorem: For a given lattice polytope P we give a criterion for an integer m to guarantee that mP is normal.", "revisions": [ { "version": "v1", "updated": "2004-02-20T06:00:41.000Z" } ], "analyses": { "subjects": [ "14M25", "13D02", "14C20", "52B20" ], "keywords": [ "regularity", "ample line bundle", "projective toric variety", "applying similar methods", "combinatorial theorem" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......2328H" } } }