{ "id": "math/0402018", "version": "v4", "published": "2004-02-03T14:40:57.000Z", "updated": "2004-10-20T19:21:22.000Z", "title": "Representations of locally compact groups on QSL_p-spaces and a p-analog of the Fourier-Stieltjes algebra", "authors": [ "Volker Runde" ], "comment": "19 pages; LaTeX2e; two references added", "journal": "Pacific J. Math. 221 (2005), 379-397", "categories": [ "math.FA", "math.RT" ], "abstract": "For a locally compact group $G$ and $p \\in (1,\\infty)$, we define $B_p(G)$ to be the space of all coefficient functions of isometric representations of $G$ on quotients of subspaces of $L_p$ spaces. For $p =2$, this is the usual Fourier--Stieltjes algebra. We show that $B_p(G)$ is a commutative Banach algebra that contractively (isometrically, if $G$ is amenable) contains the Fig\\`a-Talamanca--Herz algebra $A_p(G)$. If $2 \\leq q \\leq p$ or $p \\leq q \\leq 2$, we have a contractive inclusion $B_q(G) \\subset B_p(G)$. We also show that $B_p(G)$ embeds contractively into the multiplier algebra of $A_p(G)$ and is a dual space. For amenable $G$, this multiplier algebra and $B_p(G)$ are isometrically isomorphic.", "revisions": [ { "version": "v4", "updated": "2004-10-20T19:21:22.000Z" } ], "analyses": { "subjects": [ "46J99", "22D12", "22D35", "43A07", "43A15", "43A65", "46J99" ], "keywords": [ "locally compact group", "multiplier algebra", "usual fourier-stieltjes algebra", "isometric representations", "commutative banach algebra" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......2018R" } } }