{ "id": "math/0401402", "version": "v2", "published": "2004-01-28T17:17:41.000Z", "updated": "2004-09-14T12:40:04.000Z", "title": "Conditional Intensity and Gibbsianness of Determinantal Point Processes", "authors": [ "Hans-Otto Georgii", "Hyun Jae Yoo" ], "comment": "revised and extended", "journal": "J. Statist. Phys. 118, 55-84 (2005)", "doi": "10.1007/s10955-004-8777-5", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "The Papangelou intensities of determinantal (or fermion) point processes are investigated. These exhibit a monotonicity property expressing the repulsive nature of the interaction, and satisfy a bound implying stochastic domination by a Poisson point process. We also show that determinantal point processes satisfy the so-called condition $(\\Sigma_{\\lambda})$ which is a general form of Gibbsianness. Under a continuity assumption, the Gibbsian conditional probabilities can be identified explicitly.", "revisions": [ { "version": "v2", "updated": "2004-09-14T12:40:04.000Z" } ], "analyses": { "subjects": [ "60G55", "60K35" ], "keywords": [ "conditional intensity", "gibbsianness", "determinantal point processes satisfy", "bound implying stochastic domination", "poisson point process" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Statistical Physics", "year": 2005, "month": "Jan", "volume": 118, "number": "1-2", "pages": 55 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005JSP...118...55G" } } }