{ "id": "math/0401356", "version": "v1", "published": "2004-01-26T19:41:36.000Z", "updated": "2004-01-26T19:41:36.000Z", "title": "Common divisors of a^n-1 and b^n-1 over function fields", "authors": [ "Joseph H. Silverman" ], "journal": "New York Journal of Math. (electronic) 10 (2004), 37--43", "categories": [ "math.NT", "math.AG" ], "abstract": "Ailon and Rudnick have shown that if $a,b \\in C[T]$ are multiplicatively independent polynomials, then $\\deg(\\gcd(a^n-1,b^n-1))$ is bounded for all $n\\ge1$. We show that if instead $a,b \\in F[T]$ for a finite field $F$ of characteristic $p$, then $\\deg(\\gcd(a^n-1,b^n-1))$ is larger than $Cn$ for a constant $C=C(a,b)>0$ and for infinitely many $n$, even if $n$ is restricted in various reasonable ways (e.g., $gec(n,p)=1$).", "revisions": [ { "version": "v1", "updated": "2004-01-26T19:41:36.000Z" } ], "analyses": { "subjects": [ "11T55", "11R58", "11D61" ], "keywords": [ "function fields", "common divisors", "multiplicatively independent polynomials", "finite field" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......1356S" } } }