{ "id": "math/0401349", "version": "v2", "published": "2004-01-26T12:52:45.000Z", "updated": "2004-02-04T14:28:04.000Z", "title": "Twisted conjugacy in free groups and Makanin's question", "authors": [ "Valerij Bardakov", "Leonid Bokut", "Andrei Vesnin" ], "comment": "19 pages", "categories": [ "math.GR" ], "abstract": "We discuss the following question of G. Makanin from ``Kourovka notebook'': does there exist an algorithm to determine is for an arbitrary pair of words $U$ and $V$ of a free group $F_n$ and an arbitrary automorphism $\\phi \\in Aut(F_n)$ the equation $\\phi (X) U = V X$ solvable in $F_n$? We give the affirmative answer in the case when an automorphism is virtually inner, i.e. some its non-zero power is an inner automorphism of $F_n$.", "revisions": [ { "version": "v2", "updated": "2004-02-04T14:28:04.000Z" } ], "analyses": { "subjects": [ "20F10" ], "keywords": [ "free group", "makanins question", "twisted conjugacy", "inner automorphism", "arbitrary automorphism" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......1349B" } } }