{ "id": "math/0401257", "version": "v2", "published": "2004-01-20T16:47:28.000Z", "updated": "2005-06-14T16:43:12.000Z", "title": "Is the deformation space of complete affine structures on the 2-torus smooth?", "authors": [ "Oliver Baues", "William M. Goldman" ], "comment": "26 pages, 9 figures", "journal": "Contemporary Mathematics, Volume 389, 2005, p. 69 -89", "categories": [ "math.DG" ], "abstract": "Periods of parallel exterior forms define natural coordinates on the deformation space of complete affine structures on the two-torus. These coordinates define a differentiable structure on this deformation space, under which it is diffeomorphic to $R^2$. The action of the mapping class group of $T^2$ is equivalent in these coordinates with the standard linear action of $\\SL_2(Z)$ on $R^2$.", "revisions": [ { "version": "v2", "updated": "2005-06-14T16:43:12.000Z" } ], "analyses": { "subjects": [ "58D29", "22E40", "22F30", "57S30" ], "keywords": [ "complete affine structures", "deformation space", "parallel exterior forms define natural", "exterior forms define natural coordinates" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......1257B" } } }