{ "id": "math/0401202", "version": "v1", "published": "2004-01-16T14:51:55.000Z", "updated": "2004-01-16T14:51:55.000Z", "title": "On the integrability of the n-centre problem", "authors": [ "Andreas Knauf", "Iskander A. Taimanov" ], "comment": "22 pages, a short announcement see in math.DS/0312429", "journal": "Mathematische Annalen 331 (2005), 631--649", "categories": [ "math.DS", "math-ph", "math.MP" ], "abstract": "It is known that for $n \\geq 3$ centres and positive energies the $n$-centre problem of celestial mechanics leads to a flow with a strange repellor and positive topological entropy. Here we consider the energies above some threshold and show: Whereas for arbitrary $g >1$ independent integrals of Gevrey class $g$ exist, no real-analytic (that is, Gevrey class 1) independent integral exists.", "revisions": [ { "version": "v1", "updated": "2004-01-16T14:51:55.000Z" } ], "analyses": { "keywords": [ "n-centre problem", "integrability", "independent integral", "gevrey class", "celestial mechanics" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......1202K" } } }