{ "id": "math/0401115", "version": "v1", "published": "2004-01-12T13:35:20.000Z", "updated": "2004-01-12T13:35:20.000Z", "title": "Weak convergence of random p-mappings and the exploration process of inhomogeneous continuum random trees", "authors": [ "David J. Aldous", "Gregory Miermont", "Jim Pitman" ], "comment": "16 pages", "journal": "Probability Theory and Related Fields 133 (2005) 1--17", "doi": "10.1007/s00440-004-0407-2", "categories": [ "math.PR" ], "abstract": "We study the asymptotics of the $p$-mapping model of random mappings on $[n]$ as $n$ gets large, under a large class of asymptotic regimes for the underlying distribution $p$. We encode these random mappings in random walks which are shown to converge to a functional of the exploration process of inhomogeneous random trees, this exploration process being derived (Aldous-Miermont-Pitman 2003) from a bridge with exchangeable increments. Our setting generalizes previous results by allowing a finite number of ``attracting points'' to emerge.", "revisions": [ { "version": "v1", "updated": "2004-01-12T13:35:20.000Z" } ], "analyses": { "subjects": [ "60C05", "60F17" ], "keywords": [ "inhomogeneous continuum random trees", "exploration process", "weak convergence", "random p-mappings", "random mappings" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......1115A" } } }