{ "id": "math/0401075", "version": "v1", "published": "2004-01-08T15:31:54.000Z", "updated": "2004-01-08T15:31:54.000Z", "title": "Configuration spaces are not homotopy invariant", "authors": [ "Riccardo Longoni", "Paolo Salvatore" ], "comment": "6 pages", "categories": [ "math.AT" ], "abstract": "We present a counterexample to the conjecture on the homotopy invariance of configuration spaces. More precisely, we consider the lens spaces $L_{7,1}$ and $L_{7,2}$, and prove that their configuration spaces are not homotopy equivalent by showing that their universal coverings have different Massey products.", "revisions": [ { "version": "v1", "updated": "2004-01-08T15:31:54.000Z" } ], "analyses": { "subjects": [ "55R80", "55S30" ], "keywords": [ "configuration spaces", "homotopy invariant", "massey products", "lens spaces" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......1075L" } } }