{ "id": "math/0401073", "version": "v1", "published": "2004-01-08T11:02:18.000Z", "updated": "2004-01-08T11:02:18.000Z", "title": "Asymptotic expansions in $n^{-1}$ for percolation critical values on the $n$-cube and $\\mathbb{Z}^n$", "authors": [ "Remco van der Hofstad", "Gordon Slade" ], "comment": "26 pages, 2 figures", "categories": [ "math.PR", "math.CO" ], "abstract": "We use the lace expansion to prove that the critical values for nearest-neighbour bond percolation on the $n$-cube $\\{0,1\\}^n$ and on $\\mathbb{Z}^n$ have asymptotic expansions, with rational coefficients, to all orders in powers of $n^{-1}$.", "revisions": [ { "version": "v1", "updated": "2004-01-08T11:02:18.000Z" } ], "analyses": { "subjects": [ "05C80", "60K35", "82B43" ], "keywords": [ "percolation critical values", "asymptotic expansions", "nearest-neighbour bond percolation", "lace expansion", "rational coefficients" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......1073V" } } }