{ "id": "math/0401072", "version": "v1", "published": "2004-01-08T10:56:23.000Z", "updated": "2004-01-08T10:56:23.000Z", "title": "Expansion in $n^{-1}$ for percolation critical values on the $n$-cube and $Z^n$: the first three terms", "authors": [ "Remco van der Hofstad", "Gordon Slade" ], "comment": "18 pages, 3 figures", "categories": [ "math.PR", "math.CO" ], "abstract": "Let $p_c(\\mathbb{Q}_n)$ and $p_c(\\mathbb{Z}^n)$ denote the critical values for nearest-neighbour bond percolation on the $n$-cube $\\mathbb{Q}_n = \\{0,1\\}^n$ and on $\\Z^n$, respectively. Let $\\Omega = n$ for $\\mathbb{G} = \\mathbb{Q}_n$ and $\\Omega = 2n$ for $\\mathbb{G} = \\mathbb{Z}^n$ denote the degree of $\\mathbb{G}$. We use the lace expansion to prove that for both $\\mathbb{G} = \\mathbb{Q}_n$ and $\\mathbb{G} = \\mathbb{Z}^n$, $p_c(\\mathbb{G}) & = \\cn^{-1} + \\cn^{-2} + {7/2} \\cn^{-3} + O(\\cn^{-4}).$ This extends by two terms the result $p_c(\\mathbb{Q}_n) = \\cn^{-1} + O(\\cn^{-2})$ of Borgs, Chayes, van der Hofstad, Slade and Spencer, and provides a simplified proof of a previous result of Hara and Slade for $\\mathbb{Z}^n$.", "revisions": [ { "version": "v1", "updated": "2004-01-08T10:56:23.000Z" } ], "analyses": { "subjects": [ "05C80", "60K35", "82B43" ], "keywords": [ "percolation critical values", "nearest-neighbour bond percolation", "van der hofstad", "lace expansion" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......1072V" } } }