{ "id": "math/0401051", "version": "v1", "published": "2004-01-06T17:30:54.000Z", "updated": "2004-01-06T17:30:54.000Z", "title": "Minimum Braids: A Complete Invariant of Knots and Links", "authors": [ "Thomas A. Gittings" ], "comment": "40 pages", "categories": [ "math.GT", "math.AT" ], "abstract": "Minimum braids are a complete invariant of knots and links. This paper defines minimum braids, describes how they can be generated, presents tables for knots up to ten crossings and oriented links up to nine crossings, and uses minimum braids to study graph trees, amphicheirality, unknotting numbers, and periodic tables.", "revisions": [ { "version": "v1", "updated": "2004-01-06T17:30:54.000Z" } ], "analyses": { "subjects": [ "57M27", "57M15" ], "keywords": [ "complete invariant", "paper defines minimum braids", "study graph trees", "periodic tables", "oriented links" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }